Láser de fibra de tulio: ¿revolucionario o frenesí mediático?

Autores/as

  • Eduardo Gonzalez-Cuenca Western University, London, Ontario, Canada.
  • Hassan Razvi Western University, London, Ontario, Canada.

DOI:

https://doi.org/10.48193/revistamexicanadeurologa.v83i1.1013

Palabras clave:

Tulio, láseres de estado sólido, litotricia láser, urolitiasis, láser Holmiun-YAG

Resumen

Descripción: El láser de holmio: itrio-aluminio-granate (Ho:YAG) se ha convertido en el dispositivo de litotripsia intra-corpórea de referencia desde que se utilizó por primera vez en la década de 1980. Recientemente, el láser de fibra de tulio (TFL) se introdujo en el entorno clínico, con el potencial de abordar algunas de las limitaciones inherentes de los dispositivos Ho:YAG. En particular, los primeros estudios sugirieron que el TFL proporciona una mayor capacidad de pulverización y fragmentación, menor retropulsión y una mayor tasa libre de litiasis en comparación con el láser Ho:YAG.

Relevancia: Si se confirman las afirmaciones iniciales sobre las ventajas de pulverización del TFL, esto sería un avance significativo en el campo de endourología. La capacidad de pulverizar litos de mayor tamaño en un menor tiempo quirúrgico, podría extender las aplicaciones de la ureteroscopía y reducir la necesidad de procedimientos más invasivos.

Conclusión: La experiencia inicial con el TFL es prometedora y sugiere una ventaja sobre la litotripsia con láser Ho:YAG. Se requieren ensayos clínicos prospectivos y aleatorizados, con un diseño adecuado, para delinear las ventajas, desventajas y optimizar los resultados clíncos de los pacientes.

Referencias

Coptcoat MJ, Ison KT, Watson G, Wickham JE. Lasertripsy for ureteric stones in 120 cases: lessons learned. British Journal of Urology. 1988;61(6): 487–489. https://doi.org/10.1111/j.1464-410x.1988.tb05085.x.

Hofmann R, Hartung R. Use of pulsed Nd:YAG laser in the ureter. The Urologic Clinics of North America. 1988;15(3): 369–375. https://doi.org/10.1016/S0094-0143(21)01578-0.

Sayer J, Johnson DE, Price RE, Cromeens DM. Ureteral Lithotripsy with the Holmium:YAG Laser. Journal of Clinical Laser Medicine & Surgery. 1993;11(2): 61–65. https://doi.org/10.1089/clm.1993.11.61.

Denstedt JD, Razvi HA, Sales JL, Eberwein PM. Preliminary experience with holmium: YAG laser lithotripsy. Journal of Endourology. 1995;9(3): 255–258. https://doi.org/10.1089/end.1995.9.255.

Chan KF, Pfefer TJ, Teichman JM, Welch AJ. A perspective on laser lithotripsy: the fragmentation processes. Journal of Endourology. 2001;15(3): 257–273. https://doi.org/10.1089/089277901750161737.

Pierre S, Preminger GM. Holmium laser for stone management. World Journal of Urology. 2007;25(3): 235–239. https://doi.org/10.1007/s00345-007-0162-y.

Vassar GJ, Chan KF, Teichman JM, Glickman RD, Weintraub ST, Pfefer TJ, et al. Holmium: YAG lithotripsy: photothermal mechanism. Journal of Endourology. 1999;13(3): 181–190. https://doi.org/10.1089/end.1999.13.181.

Fried NM. Recent advances in infrared laser lithotripsy [Invited]. Biomedical Optics Express. 2018;9(9): 4552–4568. https://doi.org/10.1364%2FBOE.9.004552.

Ventimiglia E, Traxer O. What Is Moses Effect: A Historical Perspective. Journal of Endourology. 2019;33(5): 353–357. https://doi.org/10.1089/end.2019.0012.

Isner J, Clarke R, Katzir A, Gal D, DeJesus S, Halaburka K. Transmission characteristics of individual wavelengths in blood do not predict ability to accomplish laser ablation in a blood field-inferential evidence for the moses effect. In: Circulation. AMER HEART ASSOC 7272 GREENVILLE AVENUE, DALLAS, TX 75231-4596; 1986. p. 361–361.

Traxer O, Keller EX. Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser. World Journal of Urology. 2020;38(8): 1883–1894. https://doi.org/10.1007/s00345-019-02654-5.

Kronenberg P, Traxer O. The laser of the future: reality and expectations about the new thulium fiber laser-a systematic review. Translational Andrology and Urology. 2019;8(Suppl 4): S398–S417. https://doi.org/10.21037/tau.2019.08.01.

Kronenberg P, Hameed BZ, Somani B. Outcomes of thulium fibre laser for treatment of urinary tract stones: results of a systematic review. Current Opinion in Urology. 2021;31(2): 80–86. https://doi.org/10.1097/mou.0000000000000853.

Razvi HA, Denstedt JD, Chun SS, Sales JL. Intracorporeal Lithotripsy With the Holmium:YAG Laser. Journal of Urology. 1996;156(3): 912–914. https://doi.org/10.1016/S0022-5347(01)65661-1.

Fried NM. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 microm. Lasers in Surgery and Medicine. 2005;37(1): 53–58. https://doi.org/10.1002/lsm.20196.

Blackmon RL, Irby PB, Fried NM. Holmium:YAG (lambda = 2,120 nm) versus thulium fiber (lambda = 1,908 nm) laser lithotripsy. Lasers in Surgery and Medicine. 2010;42(3): 232–236. https://doi.org/10.1002/lsm.20893.

Hardy LA, Vinnichenko V, Fried NM. High power holmium:YAG versus thulium fiber laser treatment of kidney stones in dusting mode: ablation rate and fragment size studies. Lasers in Surgery and Medicine. 2019;51(6): 522–530. https://doi.org/10.1002/lsm.23057.

Hardy LA, Wilson CR, Irby PB, Fried NM. Thulium fiber laser lithotripsy in an in vitro ureter model. Journal of Biomedical Optics. 2014;19(12): 128001. https://doi.org/10.1117/1.jbo.19.12.128001.

Blackmon RL, Irby PB, Fried NM. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. Journal of Biomedical Optics. 2011;16(7): 071403. https://doi.org/10.1117/1.3564884.

Panthier * Frederic, Doizi S, Berthe L, Traxer O. Pd04-12 in vitro comparison of ablation rates between superpulsed thulium fiber laser and ho:yag laser for endocorporeal lithotripsy. Journal of Urology. 2020;203(Supplement 4): e83–e83. https://doi.org/10.1097/JU.0000000000000824.012.

Andreeva V, Vinarov A, Yaroslavsky I, Kovalenko A, Vybornov A, Rapoport L, et al. Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy. World Journal of Urology. 2020;38(2): 497–503. https://doi.org/10.1007/s00345-019-02785-9.

Knudsen * Bodo, Chew B, Molina W. Mp79-16 super pulse thulium fiber laser compared to 120w holmium:yag laser: impact on retropulsion and laser fiber burn back. Journal of Urology. 2019;201(Supplement 4): e1157–e1158. https://doi.org/10.1097/01.JU.0000557395.71689.0d.

Martov AG, Ergakov DV, Guseinov MA, Andronov AS, Dutov SV, Vinnichenko VA, et al. [Initial experience in clinical application of thulium laser contact lithotripsy for transurethral treatment of urolithiasis]. Urologiia (Moscow, Russia: 1999). 2018;(1): 112–120. https://dx.doi.org/10.18565/urology.2018.1.112-120.

Carrera RV, Randall JH, Garcia-Gil M, Knudsen BE, Chew BH, Thompson JA, et al. Ureteroscopic Performance of High Power Super Pulse Thulium Fiber Laser for the Treatment of Urolithiasis: Results of the First Case Series in North America. Urology. 2021;153: 87–92. https://doi.org/10.1016/j.urology.2020.12.054.

Corrales M, Traxer O. Initial clinical experience with the new thulium fiber laser: first 50 cases. World Journal of Urology. 2021;39(10): 3945–3950. https://doi.org/10.1007/s00345-021-03616-6.

Enikeev D, Taratkin M, Klimov R, Inoyatov J, Azilgareeva C, Ali S, et al. Superpulsed Thulium Fiber Laser for Stone Dusting: In Search of a Perfect Ablation Regimen-A Prospective Single-Center Study. Journal of Endourology. 2020;34(11): 1175–1179. https://doi.org/10.1089/end.2020.0519.

Ulvik Ø, Æsøy MS, Juliebø-Jones P, Gjengstø P, Beisland C. Thulium Fibre Laser versus Holmium:YAG for Ureteroscopic Lithotripsy: Outcomes from a Prospective Randomised Clinical Trial. European Urology. 2022;82(1): 73–79. https://doi.org/10.1016/j.eururo.2022.02.027.

Haas CR, Knoedler MA, Li S, Gralnek DR, Best SL, Penniston KL, et al. Pulse-modulated Holmium:YAG Laser vs the Thulium Fiber Laser for Renal and Ureteral Stones: A Single-center Prospective Randomized Clinical Trial. The Journal of Urology. 2023;209(2): 374–383. https://doi.org/10.1097/JU.0000000000003050.

Sierra A, Corrales M, Piñero A, Traxer O. Thulium fiber laser pre-settings during ureterorenoscopy: Twitter’s experts’ recommendations. World Journal of Urology. 2022;40(6): 1529–1535. https://doi.org/10.1007/s00345-022-03966-9.

Dymov * Alim, Rapoport L, Tsarichenko D, Enikeev D, Sorokin N, Akopyan G, et al. Pd01-06 prospective clinical study on superpulse thulium fiber laser: initial analysis of optimal laser settings. Journal of Urology. 2019;201(Supplement 4): e58–e58. https://doi.org/10.1097/01.JU.0000555018.13063.41.

Enikeev D, Grigoryan V, Fokin I, Morozov A, Taratkin M, Klimov R, et al. Endoscopic lithotripsy with a SuperPulsed thulium-fiber laser for ureteral stones: A single-center experience. International Journal of Urology: Official Journal of the Japanese Urological Association. 2021;28(3): 261–265. https://doi.org/10.1111/iju.14443.

Enikeev D, Shariat SF, Taratkin M, Glybochko P. The changing role of lasers in urologic surgery. Current Opinion in Urology. 2020;30(1): 24–29. https://doi.org/10.1097/mou.0000000000000695.

Molina WR, Carrera RV, Chew BH, Knudsen BE. Temperature rise during ureteral laser lithotripsy: comparison of super pulse thulium fiber laser (SPTF) vs high power 120 W holmium-YAG laser (Ho:YAG). World Journal of Urology. 2021;39(10): 3951–3956. https://doi.org/10.1007/s00345-021-03619-3.

Descargas

Publicado

2023-03-08 — Actualizado el 2023-03-09

Versiones

Número

Sección

Artículos de revisión